Consecutive power residues or nonresidues

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Power Residues and Nonresidues in Arithmetic Progressions

Let A: be an integer > 2 andp a prime such that vk(p) = (k,p — 1) > 1. Let bn + c(n = 0,1,. ..;b > 2,1 < c < b, (b,p) — (c,p) = 1) be an arithmetic progression. We denote the smallest kth power nonresidue in the progression bn + c by g(p,k,b,c), the smallest quadratic residue in the progression bn + c by r2(p,b,c), and the nth smallest prime kth power nonresidue by g„(p,k), n = 0, 1, 2,_ If C(p...

متن کامل

Pairs of Consecutive Power Residues

Introduction. Until recently none of the numerous papers on the distribution of quadratic and higher power residues was concerned with questions of the following sort: Let k and m be positive integers. According to a theorem of Brauer (1), for every sufficiently large prime p there exist m consecutive positive integers r, r + l , . . . , r + m — 1, each of which is a &th power residue of p. Let...

متن کامل

ON QUADRUPLES OF CONSECUTIVE ¿th POWER RESIDUES

In [2] it was shown that A(&, 4) = co for fe^ 1048909 and it was conjectured that A(&, 4) = =° for all k. In this paper we establish this conjecture with the following Theorem. A(&, 4) = ». Proof. It suffices to prove the theorem for values of k which are prime. The proof makes use of the following proposition which is a special case of a result of Kummer [l] (see also [3]). Proposition. Let k ...

متن کامل

Simple Arguments on Consecutive Power Residues

By some extremely simple arguments, we point out the following: (i) If n is the least positive kth power non-residue modulo a positive integer m, then the greatest number of consecutive kth power residues mod m is smaller than m/n. (ii) Let OK be the ring of algebraic integers in a quadratic field K = Q( √ d) with d ∈ {−1,−2,−3,−7,−11}. Then, for any irreducible π ∈ OK and positive integer k no...

متن کامل

On the constant in Burgess’ bound for the number of consecutive residues or non-residues

We give an explicit version of a result due to D. Burgess. Let χ be a non-principal Dirichlet character modulo a prime p. We show that the maximum number of consecutive integers for which χ takes on a particular value is less than { πe √ 6 3 + o(1) } p1/4 log p, where the o(1) term is given explicitly.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1970

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-1970-0277469-8